Improved estimation under collinearity and squared error loss

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

sequential estimation in a subclass of exponential family under weighted squared error loss

in a subclass of the scale-parameter exponential family, we consider the sequential pointestimation of a function of the scale parameter under the loss function given as the sum of the weightedsquared error loss and a linear cost. for a fully sequential sampling scheme, second order expansions areobtained for the expected sample size as well as for the regret of the procedure. the former resear...

متن کامل

On predictive density estimation for location families under integrated squared error loss

Tatsuya Kubokawa, Éric Marchand, William E. Strawderman a Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN (e-mail: [email protected]) b Université de Sherbrooke, Département de mathématiques, Sherbrooke Qc, CANADA, J1K 2R1 (e-mail: [email protected]) c Rutgers University, Department of Statistics and Biostatistics, 501 Hill Center, Bu...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1990

ISSN: 0047-259X

DOI: 10.1016/0047-259x(90)90088-y